Agentic Repair of Gurobi Optimization Models via Tool Use:
A Fractional-Factorial Study of Knowledge, Diagnostics, and Execution

Anonymous submission

Abstract

We present a modular agentic framework for automatic in-
spection and repair of Gurobi-based optimization code. The
language model operates as an orchestrator over predefined
tools and executes iterative reasoning through a closed loop
of diagnosis, tool invocation, and verification. To measure the
contribution of different functional tool capabilities, we ap-
ply a fractional-factorial experimental design using a newly
constructed dataset of 26 Gurobi optimization tasks, eval-
uated across three random seeds, two model variants, and
two reasoning budgets (12 vs. 24 steps). Our analysis shows
that reasoning depth is the dominant factor governing repair
accuracy: under shallow reasoning, knowledge-oriented re-
trieval and diagnostic tools yield substantial improvements in
solver and validation performance, while under deeper rea-
soning their marginal benefit diminishes and execution feed-
back contributes little additional value.

Introduction

Large language models (LLMs) have demonstrated strong
capabilities in code generation and editing, but recent stud-
ies show that text-only interactions remain fundamentally
unreliable for program repair. LLMs often produce patches
that appear correct in natural language yet fail at runtime,
lack required imports, misuse APIs, or silently alter pro-
gram logic (Bouzenia, Devanbu, and Pradel 2024). This
limitation arises because debugging is inherently a stateful,
multi-step process: a repair requires reading files, execut-
ing the program, inspecting errors, and iteratively refining
the fix— activities that a pure text-in/text-out LLM cannot
perform (Qiao 2025). Consequently, systems relying solely
on prompting are prone to hallucinations, incorrect assump-
tions about program state, and inability to validate correct-
ness (Qiao 2025; Kang 2025) .

These shortcomings have motivated a recent shift to-
ward tool-augmented, agentic repair frameworks. Instead of
emitting final code directly, the LLM operates as a con-
troller over a set of tools, such as file readers, test run-
ners, debuggers, or solvers. Agentic repair systems such
as RepairAgent (Bouzenia, Devanbu, and Pradel 2024), In-
spectCoder(Kang 2025), and OR-LLM-Agent (Chen 2025)
demonstrate that integrating program execution and struc-
tured observations substantially improves reliability. In these
systems, the model issues structured function calls, observes

the resulting tool output, and decides the next action in a
closed loop. This execution-grounded workflow reduces hal-
lucinations, enables fine-grained inspection, and allows the
agent to verify each candidate fix through actual program
behavior.

Our Work. We investigate how this agentic paradigm
can be applied to automatically repair Gurobi-based opti-
mization code. Unlike general Python, optimization scripts
have strict structural requirements: variables and constraints
must follow solver APIs, infeasibility must be correctly
detected, and silent semantic errors can produce plausibly
formatted but mathematically invalid models. Prior work
shows that automatically repairing optimization code re-
quires solver-feedback loops rather than static text genera-
tion (Chen 2025).

We therefore build an agent that uses OpenAI’s function-
calling protocol to orchestrate nine specialized tools, in-
cluding file inspection, static analysis, program execution,
and direct Gurobi model runs. The agent performs step-by-
step reasoning, issues tool calls as JSON objects, observes
structured feedback, and iteratively modifies only the rel-
evant sections of the code. The process terminates either
when the agent self-declares completion or when a prede-
fined step limit is reached, mirroring realistic autonomous
repair behavior rather than relying on our oracle unit tests.
All tool calls, arguments, and outputs are logged as re-
producible JSON traces, enabling deterministic replays and
fine-grained analysis of repair trajectories. To investigate
how different classes of tools and reasoning depth jointly
affect repair performance, we construct a modular evalua-
tion pipeline built on a benchmark of 26 Gurobi optimiza-
tion tasks spanning linear, mixed-integer, combinatorial, and
quadratic problem families. Because exhaustively enumer-
ating all subsets of nine tools (2°~! variants) is infeasible,
we apply a fractional-factorial design to isolate the effects
of three conceptual modules—Knowledge, Diagnostics, and
Execution—under two reasoning budgets (12 and 24 steps).
This approach allows us to quantitatively determine when
tool augmentation meaningfully improves autonomous re-
pair, and when additional reasoning alone is sufficient.

System Overview

Figure 1 shows the iterative repair loop. At each step, the
agent receives the full conversation state (including previous

Here’s the list
of Tools:

answer is

Figure 1: Agentic tool-use workflow: the model selects and
executes tools, receives grounded feedback, and iteratively
decides the next action.

ca o] | e

D 22220200209%%%

RETURN 2
LLLKKL B | RESULT =2

6

tool outputs and available tools), selects one tool to invoke,
executes it in a controlled sandbox environment, and incor-
porates the returned result into subsequent reasoning. The
cycle repeats until either a completion signal is produced or
the step limit is reached.

1. Diagnose: Read the full dialogue, tool call history.
2. Act: Select and call a tool from the enabled set.

3. Execute: Run the tool inside the sandbox.

4. Reflect: New reasoning based on the tool output.

Dataset and Setup

We constructed a benchmark of 26 Gurobi optimization
problems spanning a range of modeling complexity and
practical relevance. Thirteen problems were adapted directly
from the official Gurobi documentation, such as workforce
scheduling, production planning, and solution pool. The
remaining thirteen were independently authored to model
small-scale, interpretable applications (e.g., diet planning,
regional budgeting, resource allocation) that illustrate gen-
eral optimization principles in a controlled setting and cover
representative ILP, LP, and MIP formulations.

Each problem is implemented as an independent, self-
contained Python module defining:

* solver_core () — formulates and solves the opti-
mization model,

* validate_input () — performs structured parameter
checking, and

* adescriptive docstring summarizing the model objectives
and constraints for the self-authored problems.

After assembling the 26 solver modules, we authored a
suite of 10 unit tests per case using Python’s unittest
framework, yielding a total of 260 executable tests. Each
suite evaluates both solver correctness and input validation:

* Solver tests include 138 feasible-case evaluations of op-
timal objective values and 14 infeasibility checks verify-
ing correct detection of unsatisfiable models.

* Validation tests comprise 108 cases verifying that
validate_input () differentiates valid parameter
sets from malformed or inconsistent ones.

This dual testing framework provides comprehensive cov-
erage of both modeling behavior and parameter validation,
enabling precise, quantitative measurement of autonomous
repair performance.

Experimental Setup

Bug Injection and Dataset Construction

Let {GOraCle7 . Oracle} denote the 26 ground-truth opti-
mization solvers (one per benchmark task). From each ora-

cle implementation Gomcle, we generate three independent
bug-injected variants via an LLM mutation procedure:

Gl

9o — {60, 69, 6y, i=1,...,2.

Mutations modify the solver_core () function to in-
troduce realistic modeling defects (e.g., flipped objective
orientation, altered constraint coefficients, corrupted in-
dex logic). All injected variants remain syntactically valid
and executable, ensuring that evaluation reflects seman-
tic rather than syntactic failure modes. The accompany-
ing validate_input () routines are intentionally left
blank, requiring the agent to synthesize or repair parameter-
checking logic during debugging.

Repair Procedure

For notation, we view each corrupted benchmark variant as
the set of 26 problem instances:

Gr={a", c¢? ...,a%, ke{1,2,3},

where each G,(;) is a corrupted version of the ¢-th op-
timization task. Repairs are performed under experimen-
tal conditions determined by binary tool availability and
reasoning-step budget. Each tool configuration is repre-
sented as

X:(K7D7E)7 K?‘D?EE{O’]'},

corresponding to Knowledge, Diagnostics, and Execution
tool modules. Two reasoning horizons are tested: ¢ €
{12,24} where ¢ = 12 uses GPT-5-nano and ¢ = 24 uses
GPT-5-mini as orchestrator.

For each corrupted benchmark Gy, configuration X, and
reasoning budget ¢, the agent produces a repaired bench-
mark:

a2X (26),X
{Gk ﬁxed|t7 k. fixed|¢? * > Gk,ﬁxed t}'

All repaired programs are evaluated using our 260-unit-
test harness, ensuring consistent quantitative comparison
across reasoning budgets and tool configurations.

G ﬁxcd’t

Aggregated Stability Across Step Budgets

To assess robustness under perturbation, performance is av-
eraged across the three independently corrupted benchmarks
{G1, G2, G3}. We compare shallow and deep reasoning by
aggregating repaired benchmarks across all tool configura-
tions:

3
X
g12 = U U Gk,ﬁxed‘lz
X k=1
3
X
g24 = U U Gk,ﬁxed‘24
X k=1

Table 1 reports solver and validation results over G2 and

Gaa.

12 24 A Change
Steps Steps (pp) (%)

Solver Success (Feasible) 93.79 112.54 +18.75 +19.99
Solver Errored (Feasible) 33.33 16.88 —16.46 —49.37
Solver Failed (Feasible) 10.88 8.58 —2.30 —-21.14

Solver Success (Infeasible) 7.71 5.92 —-1.79 —23.22
Solver Errored (Infeasible) 5.54 6.96 +1.42 +25.63
Solver Failed (Infeasible) 0.75 1.13 +0.38 +50.67

Metric

Validation Pass 83.00 90.92 +7.92 +9.54
Validation Error 1533 7.08 —8.25 —53.82
Validation Failed 9.67 10.00 +0.33 +3.41

Table 1: Mean test counts aggregated over three independently
corrupted benchmark variants. Counts reflect the number of unit
tests passed or errored across all tool configurations for each
reasoning-budget condition. Solver metrics are split into feasible
(138 tests per variant) and infeasible (14 tests per variant) cate-
gories; validation metrics reflect 108 structured input-check tests.

Interpretation. Extending the reasoning horizon from 12 to
24 steps substantially improves the agent’s ability to repair
feasible optimization behavior. On feasible solver tests, suc-
cessful outcomes increase (93.79 — 112.54), while runtime
errors nearly halve (33.33 — 16.88) and outright failures
also drop (10.88 — 8.58). This suggests that additional rea-
soning cycles allow the agent to iteratively refine core model
semantics (objective direction, constraint structure, index
logic), and once a coherent Gurobi formulation is found, it
generalizes smoothly across many input configurations.

In contrast, infeasible-case behavior remains brittle: suc-
cesses decrease slightly (7.71 — 5.92), and both errors and
failures grow. Unlike feasible instances, infeasible models
do not provide a clear numerical trajectory to “pull” the
agent toward the correct formulation; detecting infeasibility
is a symbolic property of the constraint system, and small
modeling changes can flip the outcome.

Validation exhibits only modest gains (83.00 — 90.92),
reflecting a fundamental limitation of our setup: the agent
never sees unit-test feedback while repairing. Fixed code is
evaluated against the 260 tests only after the reasoning loop

terminates, so the model must design input checks purely
from conceptual reasoning and prompt instructions, without
any hint about which edge cases it is currently missing. This
is analogous to a student taking an exam without interim
grading: they may capture the main patterns but still miss
rare or finely tuned corner cases, leading to weaker improve-
ments compared to solver repair.

Overall, deeper iterative reasoning reliably enhances se-
mantic solver repair on feasible instances, while infeasibility
handling and validation remain bottlenecked by the lack of
runtime feedback and the discrete, combinatorial structure
of error conditions.

Fractional Factorial Analysis of Tool Groups

To understand how different tool capabilities influence au-
tonomous repair performance, we analyze the effects of
the Knowledge (K), Diagnostics (D), and Execution (E)
tool modules. Among the 9 total tools in our framework,
three foundational utilities (read_file, edit_file,
write_file) are always enabled, since disabling them
would prevent any meaningful repair. These are excluded
from factorial manipulation, leaving nine optional tools
grouped into three conceptual modules.

Instead run 26 = 64 full experiments, we apply a stan-
dard 23 fractional factorial design over {K,D,E}, yielding
eight configurations per mutation instance. Values 0 and 1
indicate the absence or presence of each module. We first
report raw performance under shallow and deep reasoning
budgets, then compute main effects.

Raw Results Under 12-Step Reasoning

K D E|Solver Success (%)| Validation Pass (%)
000 62.08 76.23
001 65.46 76.85
010 71.26 79.01
011 63.77 83.46
100 68.36 75.62
101 74.64 73.77
110 68.84 79.01
111 69.32 73.15

Table 2: Mean solver and validation pass rates for all eight K-D—
E configurations under the 12-step reasoning limit (averaged over
three mutation variants).

Raw Results Under 24-Step Reasoning

K D E|Solver Success (%)‘Validation Pass (%)
000 82.37 84.88
001 78.74 83.64
010 81.40 85.49
011 79.23 82.41
100 82.25 86.73
101 82.61 84.26
110 81.64 81.79
111 83.57 84.26

Table 3: Mean solver and validation pass rates under the 24-step
reasoning limit, showing convergence and reduced dependence on
external tool modules.

Main Effects Under Limited Reasoning (12 Steps) Un-
der the 12-step setting, Table 2 shows a clear and immediate
benefit from enabling any single tool group. Starting from
the baseline configuration (K = 0,D = 0, F = 0), turn-
ing on either Knowledge, Diagnostics, or Execution alone
leads to a noticeable improvement in solver success. This
indicates that, with shallow reasoning depth, the agent relies
heavily on any additional structural support provided by the
tools.

To quantify these contributions, we compute standard
main effects by contrasting average performance between
configurations where a factor is enabled versus disabled:

Effect(K) =E[Y | K = 1] - E[Y | K = 0],

and analogously for D and FE, where Y denotes either the
solver success rate or the validation-pass rate.

Factor Solver (pp) Validation (pp)
K (Knowledge) +4.65 —3.50
D (Diagnostics) +0.66 +3.04
E (Execution) +0.66 —0.66

Table 4: Main effects of the Knowledge (K), Diagnostics (D), and
Execution (E) factors under the 12-step setting, computed from the
configuration means in Table 2. Positive values indicate that en-
abling a factor increases the corresponding pass rate (in percentage
points) on average.

The 12-step results yield following factor-level conslu-
sions:

* Knowledge tools (K) provide the strongest gains in solver
correctness. This aligns with our setup: the knowledge
module includes both online search and a local RAG
index built from the Gurobi API documentation. Under
shallow reasoning, the agent uses these retrieval cues
(e.g., valid Model .addConstr patterns, attribute se-
mantics, or solver parameter usage) to reconstruct missing
logic that it cannot derive through reasoning alone.

* Diagnostic effects on validation. The Diagnostics factor
shows a small and inconsistent effect on validation perfor-
mance. At present, we do not have a clear explanation for

this interaction. Our diagnostic tools focus on static struc-
ture and model introspection rather than input semantics,
so there is no direct reason to expect improvement in vali-
dation behavior. We therefore treat this as an empirical ob-
servation rather than a causal conclusion. Understanding
why Diagnostics exhibits minor influence on validation
accuracy is an open question and an interesting direction
for future analysis.

* Execution tools (E) do not help under shallow reasoning.
Execution only shows results for a single test instance.
If the agent cannot interpret those numeric outputs—or
reason about why the model failed—it gains no advan-
tage. For example, running the regional-investment model
yields values and a solution vector, but a 12-step agent
cannot infer from this alone whether constraints were
missing, bounds mis-set, or the objective mis-specified.
Thus, execution signals remain low-value until the model
is capable of deeper multi-step reasoning.

Main Effects Under Deep Reasoning (24 Steps) We
compute main effects for the 24-step setting using the same
contrast-based method introduced in the 12-step analysis:

Effect(K) =E[Y | K = 1] —E[Y | K =0),

with Y denoting solver or validation performance. The eight
configurations in Table 3 provide the necessary averages for
each factor level (0 vs. 1), from which the effects in Table 5
are derived.

With 24 reasoning steps, the agent becomes substantially
more self-sufficient, and the marginal value of these tools
decreases.

Factor Solver (pp) Validation (pp)
K (Knowledge) +3.20 +3.03
D (Diagnostics) +0.70 —-0.40
E (Execution) +0.10 +0.10

Table 5: Main effects of the Knowledge (K), Diagnostics (D), and
Execution (E) factors under the 24-step setting, computed from the
configuration means in Table 3. Tool contributions are substantially
smaller than in the 12-step case.

The 24-step results reveal several clear trends:

* Knowledge tools (K) remain mildly beneficial. Even
though deep reasoning allows the model to reconstruct
much of the solver logic internally, the knowledge mod-
ule supplies ground-truth API corpus from our curated
Gurobi documentation RAG. Because the retrieved in-
formation is highly reliable (and domain-specific), it still
nudges the agent toward correct modeling choices in both
solver and validation outcomes.

* Diagnostics (D) provides almost no additional value.
The small and slightly negative validation effect suggests
that with ample reasoning steps, the model already per-
forms sufficient internal self-checking. When the model
can reason through its own code, external structural in-
spection becomes redundant and may even introduce mild

noise by diverting attention to secondary modeling de-
tails.

¢ Execution tools (E) have near-zero marginal effect.
A single execution trace offers limited insight when the
model already possesses enough reasoning depth to antic-
ipate runtime behavior. Execution feedback only reports
what happened, not why it happened; under deep rea-
soning, the agent can infer correctness directly from the
symbolic structure of the code, making runtime feedback
largely unnecessary.

Summary and Discussion

The fractional-factorial study reveals a coherent picture of
how tool capabilities interact with the model’s reasoning
depth. While individual modules can provide meaningful
benefits under constrained settings, deeper reasoning funda-
mentally changes the dynamics of repair.

Summary of Findings
Across both reasoning depths, a clear pattern emerges:

* Reasoning depth is the dominant driver of repair accuracy.
Increasing the agent’s step budget from 12 to 24 consis-
tently improves both solver and validation performance,
even with minimal tool support.

e Under shallow reasoning, Knowledge and Diagnostics
tools provide the strongest gains. Knowledge tools sup-
ply reliable API semantics through local RAG and online
search, while Diagnostics contributes structural guidance
that the agent cannot infer with limited internal reasoning.

e Under deep reasoning, the agent effectively internalizes
the repair process. External tools become supplementary
rather than essential, and their marginal effects shrink to
near zero.

This analysis provides a principled quantitative under-
standing of when tool augmentation matters and why. The
benefits of external modules are not uniform—they depend
critically on the model’s reasoning budget.

Limitations

Execution feedback. Unlike traditional Python debug-
ging—where a failing run typically reveals a stack trace or
highlights the exact source of an error—Gurobi model exe-
cution returns only coarse solver signals (e.g., OPTIMAL,
INFEASIBLE, objective values). A single run rarely in-
dicates which constraint, variable, or structural modeling
choice is responsible for failure. Because many modeling er-
rors produce feasible yet semantically incorrect models, the
Execution (E) module provides limited actionable guidance.
This property is inherent to mathematical programming and
explains why execution tools show minimal marginal effect
in our fractional-factorial study.

Restricted knowledge corpus. The Knowledge (K) mod-
ule draws from a small, API-focused RAG corpus containing
roughly 300 entries (e.g., tuplelist.select, variable
attributes, lazy updates). While this information is reliable,
it does not include higher-level modeling patterns, canoni-
cal formulations, or examples of structural constraints used

in practice. As a result, knowledge tools improve API usage
but cannot supply broader modeling intuition, limiting their
impact once the agent has sufficient reasoning depth.

Prompt sensitivity across tool configurations. Because
each K-D-E configuration enables a different subset of
tools, the agent receives slightly different system prompts
for each setting. In particular, the Execution (E) module in-
cludes a scratchpad tool that requires a specialized instruc-
tion block encouraging the model to generate and run unit
tests. This introduces mild heterogeneity across prompts. Al-
though the differences are small and the core agent instruc-
tions remain identical, it is possible that prompt-level vari-
ation contributes to performance differences in addition to
the tools themselves. Our study does not isolate these ef-
fects, and fully disentangling prompt sensitivity from tool
contribution remains an open question.

Future Work

These limitations suggest several promising directions for
strengthening tool-driven repair of optimization code:

e Prompt-robust evaluation. Because different K-D-E
configurations enable different tools, each setting requires
a slightly modified system prompt (e.g., the scratchpad
tool necessitates explicit instructions on generating and
running unit tests). Although the variations are small,
prompt differences may still influence model behavior.
Future work should develop prompts that adapt automati-
cally to available tools or design a prompt architecture that
remains invariant across tool subsets, ensuring that mea-
sured effects stem purely from functional tool capability
rather than prompt-level confounders.

* Richer diagnostic feedback. Modern solvers expose
powerful debugging primitives—such as conflict refine-
ment, IIS (irreducible inconsistent subsystem) extraction,
and constraint relaxation analysis—that pinpoint the ex-
act components responsible for infeasibility or incon-
sistency. Integrating these into the Diagnostics module
could transform coarse solver status codes into actionable,
constraint-level repair signals.

* Expanded modeling-oriented RAG. Our current RAG
corpus focuses primarily on Gurobi API semantics
(roughly 300 entries). Expanding this corpus to include
canonical modeling patterns (e.g., facility location, as-
signment, cutting stock), best-practice formulations, and
domain-specific templates would enable the agent to per-
form higher-level semantic corrections, not just API-level
fixes. Such modeling-aware retrieval may be especially
beneficial under shallow reasoning limits.

Overall, these directions point toward more capable, diag-
nostic, and model-aware agentic repair systems—ones that
exploit external tools when they provide genuine value and
rely on internal reasoning when they do not. We plan to re-
lease the full benchmark suite, bug-injection scripts, and re-
pair traces to support further research in agentic optimiza-
tion debugging.

References

Bouzenia, I.; Devanbu, P.; and Pradel, M. 2024. RepairA-
gent: An Autonomous, LLM-Based Agent for Program Re-
pair. arXiv preprint arXiv:2403.17134.

Chen, e. a. 2025. OR-LLM-Agent: Automating Modeling
and Solving of Optimization Problems with Large Language
Models. arXiv preprint 2503.10009v1.

Kang, e. a. 2025. InspectCoder: Dynamic Analysis-Enabled
Self-Repair via LLM-Debugger Collaboration. arXiv
preprint 2510.18327.

Qiao, e. a. 2025. RepairAgent: An Autonomous LLM-Based
Agent for Program Repair. In /ICSE.

